Maternal fatty acid concentrations and newborn DNA methylation.

Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA. Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA. Glotech Inc., Rockville, MD, USA.

The American journal of clinical nutrition. 2020;(3):613-621

Abstract

BACKGROUND Preconception nutrition sets the stage for a healthy pregnancy. Maternal fatty acids (FAs) are related to beneficial neonatal outcomes with DNA methylation proposed as a mechanism; however, few studies have investigated this association and none with preconception FAs. OBJECTIVES We examined the relations of maternal plasma FA concentrations at preconception (n = 346) and 8 weeks of gestation (n = 374) with newborn DNA methylation. METHODS The Effects of Aspirin in Gestation and Reproduction Trial (2006-2012) randomly assigned women with previous pregnancy loss to low dose aspirin or placebo prior to conception. We measured maternal plasma phospholipid FA concentration at preconception (on average 4 mo before pregnancy) and 8 weeks of gestation. Cord blood DNA from singletons was measured using the MethylationEPIC BeadChip. We used robust linear regression to test the associations of FA concentration with methylation β-values of each CpG site, adjusting for estimated cell count using a cord blood reference, sample plate, maternal sociodemographic characteristics, cholesterol, infant sex, and epigenetic-derived ancestry. False discovery rate correction was used for multiple testing. RESULTS Mean ± SD concentrations of preconception marine (20:5n-3+22:6n-3+22:5n-3) and ω-6 PUFAs, SFAs, MUFAs, and trans FAs were 4.7 ± 1.2, 38.0 ± 2.0, 39.4 ± 1.8, 11.6 ± 1.1, and 1.0 ± 0.4 % of total FA, respectively; concentrations at 8 weeks of gestation were similar. Preconception marine PUFA concentration was associated with higher methylation at GRAMD2 (P = 1.1 × 10-8), LOXL1 (P = 5.5 × 10-8), SIK3 (P = 1.6 × 10-7), HTR1B (P = 1.9 × 10-7), and MCC (P = 2.1 × 10-7) genes. Preconception SFA concentration was associated with higher methylation at KIF25-AS1 and lower methylation at SLC39A14; other associations exhibited sensitivity to outliers. The trans FA concentration was related to lower methylation at 3 sites and higher methylation at 1 site. FAs at 8 weeks of gestation were largely unrelated to DNA methylation. CONCLUSIONS Maternal preconception FAs are related to newborn DNA methylation of specific CpG sites, highlighting the importance of examining nutritional exposures preconceptionally. This trial was registered at clinicaltrials.gov as NCT00467363.

Methodological quality

Metadata

MeSH terms : Fatty Acids